On the fundamental group of real toric varieties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the fundamental group of real toric varieties

Let X(∆) be the real toric variety associated to a smooth fan ∆. The main purpose of this article is: (i) to determine the fundamental group and the universal cover of X(∆), (ii) to give necessary and sufficient conditions on ∆ under which π1(X(∆)) is abelian, (iii) to give necessary and sufficient conditions on ∆ under which X(∆) is aspherical, and when ∆ is complete, (iv) to give necessary an...

متن کامل

Orientability of Real Toric Varieties

We characterize the orientability of an abstract real toric variety as well as the orientability of a toric subvariety of a sphere. We also determine the number of components of the smooth locus of a toric variety. These results are proven for an extension of the Davis-Januskiewicz notion of a small cover to singular spaces. We characterize the orientability of toric varieties associated to pos...

متن کامل

Toric ideals, real toric varieties, and the moment map

This is a tutorial on some aspects of toric varieties related to their potential use in geometric modeling. We discuss projective toric varieties and their ideals, as well as real toric varieties and the moment map. In particular, we explain the relation between linear precision and the moment map.

متن کامل

Toric ideals, real toric varieties, and the algebraic moment map

This is a tutorial on some aspects of toric varieties related to their potential use in geometric modeling. We discuss projective toric varieties and their ideals, as well as real toric varieties. In particular, we explain the relation between linear precision and a particular linear projection we call the algebraic moment map.

متن کامل

Hodge Spaces of Real Toric Varieties

We define the Z2 Hodge spaces Hpq(Σ) of a fan Σ. If Σ is the normal fan of a reflexive polytope ∆ then we use polyhedral duality to compute the Z2 Hodge Spaces of Σ. In particular, if the cones of dimension at most e in the face fan Σ of ∆ are smooth then we compute Hpq(Σ) for p < e− 1. If Σ is a smooth fan then we completely determine the spaces Hpq(Σ) and we show XΣ is maximal, meaning that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings Mathematical Sciences

سال: 2004

ISSN: 0253-4142,0973-7685

DOI: 10.1007/bf02829668